-
1 сплав на свинцовой основе
Automobile industry: lead-base alloyУниверсальный русско-английский словарь > сплав на свинцовой основе
-
2 подшипниковый сплав на свинцовой основе
1) Engineering: lead-base bearing metal2) Metallurgy: lead-base bearing alloyУниверсальный русско-английский словарь > подшипниковый сплав на свинцовой основе
-
3 gediegenes
Blei, gediegenes
native lead;
• gereinigtes Blei refined lead.
Silber, gediegenes
solid silver;
• geringhaltiges Silber silver of base alloy;
• ungemünztes Silber silver bullion;
• verarbeitetes Silber wrought silver;
• Silberankäufe silver buying;
• Silberbarren silver bar (bullion);
• Silberbergwerk silver mine;
• Silberbestand silver coin and bullion;
• Silbergehalt percentage of silver;
• Silbergeld silver money. -
4 Bleidruckgusslegierung
f < mat> ■ lead-base die-casting alloyGerman-english technical dictionary > Bleidruckgusslegierung
-
5 Chevenard, Pierre Antoine Jean Sylvestre
SUBJECT AREA: Metallurgy[br]b. 31 December 1888 Thizy, Rhône, Franced. 15 August 1960 Fontenoy-aux-Roses, France[br]French metallurgist, inventor of the alloys Elinvar and Platinite and of the method of strengthening nickel-chromium alloys by a precipitate ofNi3Al which provided the basis of all later super-alloy development.[br]Soon after graduating from the Ecole des Mines at St-Etienne in 1910, Chevenard joined the Société de Commentry Fourchambault et Decazeville at their steelworks at Imphy, where he remained for the whole of his career. Imphy had for some years specialized in the production of nickel steels. From this venture emerged the first austenitic nickel-chromium steel, containing 6 per cent chromium and 22–4 per cent nickel and produced commercially in 1895. Most of the alloys required by Guillaume in his search for the low-expansion alloy Invar were made at Imphy. At the Imphy Research Laboratory, established in 1911, Chevenard conducted research into the development of specialized nickel-based alloys. His first success followed from an observation that some of the ferro-nickels were free from the low-temperature brittleness exhibited by conventional steels. To satisfy the technical requirements of Georges Claude, the French cryogenic pioneer, Chevenard was then able in 1912 to develop an alloy containing 55–60 per cent nickel, 1–3 per cent manganese and 0.2–0.4 per cent carbon. This was ductile down to −190°C, at which temperature carbon steel was very brittle.By 1916 Elinvar, a nickel-iron-chromium alloy with an elastic modulus that did not vary appreciably with changes in ambient temperature, had been identified. This found extensive use in horology and instrument manufacture, and even for the production of high-quality tuning forks. Another very popular alloy was Platinite, which had the same coefficient of thermal expansion as platinum and soda glass. It was used in considerable quantities by incandescent-lamp manufacturers for lead-in wires. Other materials developed by Chevenard at this stage to satisfy the requirements of the electrical industry included resistance alloys, base-metal thermocouple combinations, magnetically soft high-permeability alloys, and nickel-aluminium permanent magnet steels of very high coercivity which greatly improved the power and reliability of car magnetos. Thermostatic bimetals of all varieties soon became an important branch of manufacture at Imphy.During the remainder of his career at Imphy, Chevenard brilliantly elaborated the work on nickel-chromium-tungsten alloys to make stronger pressure vessels for the Haber and other chemical processes. Another famous alloy that he developed, ATV, contained 35 per cent nickel and 11 per cent chromium and was free from the problem of stress-induced cracking in steam that had hitherto inhibited the development of high-power steam turbines. Between 1912 and 1917, Chevenard recognized the harmful effects of traces of carbon on this type of alloy, and in the immediate postwar years he found efficient methods of scavenging the residual carbon by controlled additions of reactive metals. This led to the development of a range of stabilized austenitic stainless steels which were free from the problems of intercrystalline corrosion and weld decay that then caused so much difficulty to the manufacturers of chemical plant.Chevenard soon concluded that only the nickel-chromium system could provide a satisfactory basis for the subsequent development of high-temperature alloys. The first published reference to the strengthening of such materials by additions of aluminium and/or titanium occurs in his UK patent of 1929. This strengthening approach was adopted in the later wartime development in Britain of the Nimonic series of alloys, all of which depended for their high-temperature strength upon the precipitated compound Ni3Al.In 1936 he was studying the effect of what is now known as "thermal fatigue", which contributes to the eventual failure of both gas and steam turbines. He then published details of equipment for assessing the susceptibility of nickel-chromium alloys to this type of breakdown by a process of repeated quenching. Around this time he began to make systematic use of the thermo-gravimetrie balance for high-temperature oxidation studies.[br]Principal Honours and DistinctionsPresident, Société de Physique. Commandeur de la Légion d'honneur.Bibliography1929, Analyse dilatométrique des matériaux, with a preface be C.E.Guillaume, Paris: Dunod (still regarded as the definitive work on this subject).The Dictionary of Scientific Biography lists around thirty of his more important publications between 1914 and 1943.Further Reading"Chevenard, a great French metallurgist", 1960, Acier Fins (Spec.) 36:92–100.L.Valluz, 1961, "Notice sur les travaux de Pierre Chevenard, 1888–1960", Paris: Institut de France, Académie des Sciences.ASDBiographical history of technology > Chevenard, Pierre Antoine Jean Sylvestre
-
6 anametal
n. base metal, any metal which is not a precious metal (tin, lead, copper, etc.), metallic element in an alloy, metal which is cut
См. также в других словарях:
lead processing — Introduction preparation of the ore for use in various products. Lead (Pb) is one of the oldest metals known, being one of seven metals used in the ancient world (the others are gold, silver, copper, iron, tin, and mercury). Its low… … Universalium
Lead — (pronEng|ˈlɛd) is a main group element with a symbol Pb ( la. plumbum). Lead has the atomic number 82. Lead is a soft, malleable poor metal, also considered to be one of the heavy metals. Lead has a bluish white color when freshly cut, but… … Wikipedia
Alloy — This article is about the type of material. For the specification language, see Alloy (specification language). For lightweight auto wheels, see alloy wheel. Steel is a metal alloy whose major component is iron, with carbon content between 0.02%… … Wikipedia
Base metal — Metal Met al (? or ?; 277), n. [F. m[ e]tal, L. metallum metal, mine, Gr. ? mine; cf. Gr. ? to search after. Cf. {Mettle}, {Medal}.] 1. (Chem.) An elementary substance, as sodium, calcium, or copper, whose oxide or hydroxide has basic rather than … The Collaborative International Dictionary of English
base metal — 1. any metal other than a precious or noble metal, as copper, lead, zinc, or tin. Cf. noble metal, precious metal. 2. the principal metal of an alloy. 3. the principal metal of a piece underlying a coating of another metal; core. * * * … Universalium
base metal — any metal which is not a precious metal (tin, lead, copper, etc.); metallic element in an alloy; metal which is cut … English contemporary dictionary
Babbitt metal — noun an alloy of tin with some copper and antimony; a lining for bearings that reduces friction • Syn: ↑babbitt • Derivationally related forms: ↑babbitt (for: ↑babbitt) • Hypernyms: ↑alloy, ↑ … Useful english dictionary
metallurgy — metallurgic, metallurgical, adj. metallurgically, adv. metallurgist /met l err jist/ or, esp. Brit., /meuh tal euhr jist/, n. /met l err jee/ or, esp. Brit., /meuh tal euhr jee/, n. 1. the technique or science of working or heating metals so as… … Universalium
Brazing — This article is about the metal joining process. For the cooking technique, see braising. Brazing practice Brazing is a metal joining process whereby a filler metal is heated above and distributed between two or more close fitting parts by… … Wikipedia
Zinc — This article is about the metallic element. For other uses, see Zinc (disambiguation). copper ← zinc → gallium ↑ Zn ↓ Cd … Wikipedia
Brass — For other uses, see Brass (disambiguation). Brass die, along with zinc and copper samples. Brass is an alloy of copper and zinc; the proportions of zinc and copper can be varied to create a range of brasses with varying properties.[1] In … Wikipedia